Date

#### MINUTES OF THE HOUSE ENERGY AND UTILITIES COMMITTEE

The meeting was called to order by Chairman Carl Holmes at 9:30 a.m. on January 14, 2010, in Room 785 of the Docking State Office Building.

All members were present.

Committee staff present:

Matt Sterling, Office of the Revisor of Statutes Mary Torrence, Office of the Revisor of Statutes Cindy Lash, Kansas Legislative Research Department Iraida Orr, Kansas Legislative Research Department Renae Hansen, Committee Assistant

Conferees appearing before the Committee:

Saibal Bhattacharya, Kansas Geological Survey W. Lynn Watney, Kansas Geological Survey

Others attending:

Twenty-three including the attached list.

Chairman Holmes reminded the committee that we will meet on Tuesday, January 19, 2010 in room 783 of the Docking State Office Building.

Action On:

SB 298 - Requiring well identification signs be placed on or near certain oil or gas wells.

Representative Vern Swanson moved that we pass SB 298 out of committee, Seconded by Representative Cindy Neighbor.

Discussion on **SB298** was made by Representative Annie Kuether.

The original motion was retracted.

Representative Annie Kuether moved to amend SB298 to change on line 30 "statute book" to "Kansas Register", seconded by Mike Burgess. Motion passed.

Representative Vern Swanson moved to pass out of committee SB298 as amended, Seconded by Representative Cindy Neighbor. Motion Passed Unanimously.

Representative Annie Kuether will carry **SB298** on the House floor.

Presentation on:

Lynn Watney together with Saibal Bhattacharya, Kansas Geological Survey, (Attachment 1), gave a presentation to the committee on The Evaluation of  $CO_2$  sequestration potential in the Ozark Plateau Aquifer System (OPAS) in south-central Kansas focusing on depleted oil fields and the deep saline Arbuckle. Mr. Watney noted the amount of funds they have received the various sources for those funds, the project study area, and the project objectives. Mr. Watney spoke to the committee on the geological aspects of the project and Mr. Bhattacharya spoke on the engineering perspectives of the project. Mr. Bhattacharya spoke about the specifics of various  $CO_2$  sequestration techniques.

Questions were asked and comments made by Representatives: Milack Talia, Rob Olson, Vern Swanson, Tom Moxley, Joe Seiwert, Cindy Neighbor, Carl Holmes, Vince Wetta, and Don Myers.

The next meeting is scheduled for January 19, 2010 at 9:15 a.m.

The meeting was adjourned at 10:43 a.m

1/ 1/4

# HOUSE ENERGY AND UTILITIES COMMITTEE GUEST LIST

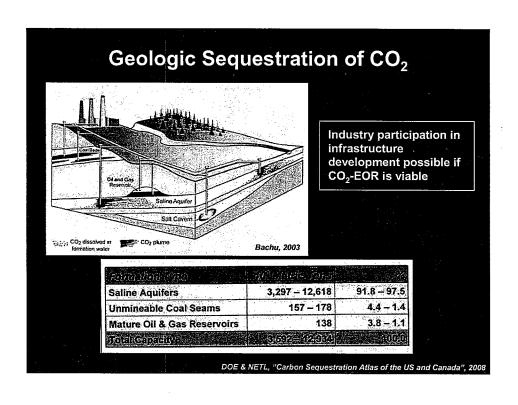
DATE: \_\_\_\_\_ January 14, 2010

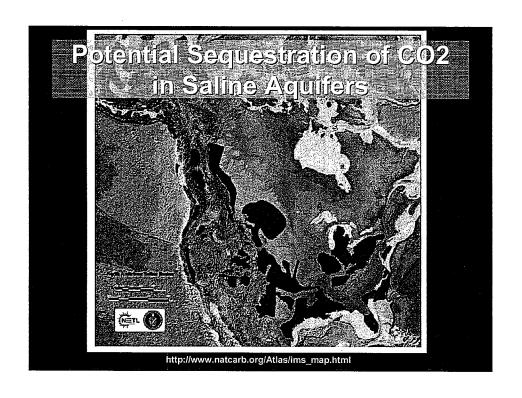
|                  | i i                     |
|------------------|-------------------------|
| NAME             | REPRESENTING            |
| TOM DAY          | KCC                     |
| LON STANTON      | NORTHERN NATURAL GAS CO |
| Louis Hauses     | KMU                     |
| BRAG MEARS       | KMU                     |
| Laund Johns      | Bowhmank Communications |
| - Tom Bruso      | ELOGA                   |
| Berend Koops     | Hein Law Firm           |
| Dong Smith       | SWKROA                  |
| Kimbelly Srahy   | 68PA                    |
| Panair Fresh     | Sprint                  |
| Scott Jones      | KCPC                    |
| Medialo Leterson | Capital Strategies      |
| Chris Cardon     | Sierra Club             |
| Marke Schreeker  | Wester                  |
|                  |                         |
|                  |                         |
|                  | ;                       |
|                  |                         |
| ·                |                         |

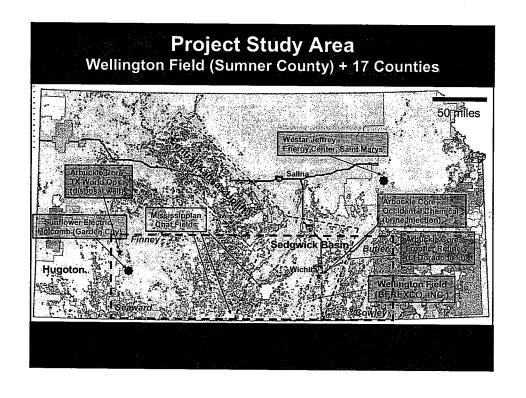
Evaluate CO<sub>2</sub> sequestration potential in Ozark Plateau Aquifer System (OPAS) in south-central KS - depleted oil fields and the deep saline Arbuckle aquifer

Saibal Bhattacharya & W. Lynn Watney Kansas Geological Survey Lawrence, KS 66047

House Energy and Utilities Committee Meeting
Topeka
Jan 14, 2010


# Relevance of CO<sub>2</sub> Sequestration in Kansas


- Coal-fired power plants to produce for years
  - Need to address problem of CO<sub>2</sub> emissions
- □ DOE efforts to develop carbon capture and storage (CCS) infrastructure
- Initiatives of the Midwestern Governors Association
- CO<sub>2</sub>-EOR proven & reliable technology
  - Potential applications in many depleted KS fields
- Deep saline aquifers has potential to sequester large volumes of CO<sub>2</sub>
  - Arbuckle saline aquifer in KS
    - 1 Is deep and thick
    - 1 Underlies a large area in south-central KS
- <sup>3</sup> Kansas centrally located to major CO<sub>2</sub> emitting states and cities
- With right incentives and government support CO<sub>2</sub> sequestration has the potential of becoming a major industry in KS


HOUSE ENERGY AND UTILITIES

DATE: | | 4 | 2010

ATTACHMENT | |



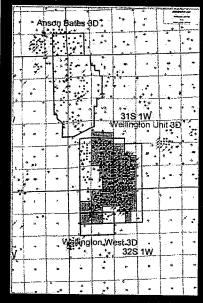




#### **Project Objectives**

- Build 3 geomodels
  - Mississippian oil reservoir at Wellington field (Sumner County) depleted
  - Arbuckle saline aquifer underlying Wellington field
  - Regional Arbuckle saline aquifer system over 17+ counties
- Conduct simulation studies to estimate CO<sub>2</sub> sequestration potential in
  - Arbuckle saline aquifer underlying Wellington field
  - Miscible CO<sub>2</sub> flood in Wellington field (along with incremental oil recovery)
- Identify potential sites for CO<sub>2</sub> sequestration in Arbuckle saline aquifer -17+ county area
- Estimated CO<sub>2</sub> sequestration potential of Arbuckle saline aquifer 17+ county area
- ☐ Risk analysis related to CO₂ sequestration
- ☐ Technology transfer

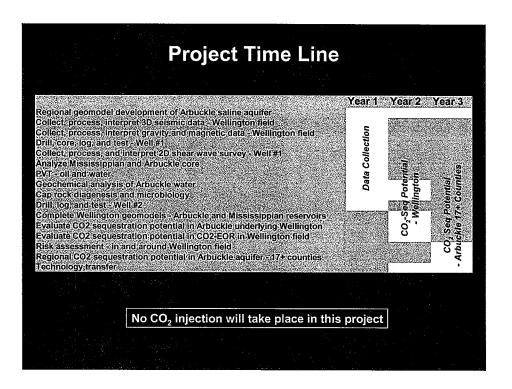
No CO, will be injected in this project


# Subjects Outside the Purview of this Project

- 1 CO<sub>2</sub> capture from point sources
- CO<sub>2</sub> transmission from source to injection sites

Other DOE projects, ongoing and future, relate to CO<sub>2</sub> capture and transportation.

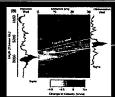
KS companies are working on proposals including demonstration projects related to  $\mathrm{CO}_2$  sequestration by  $\mathrm{CO}_2$ -EOR and injection into underlying saline aquifers.


#### Wellington field, Sumner CO

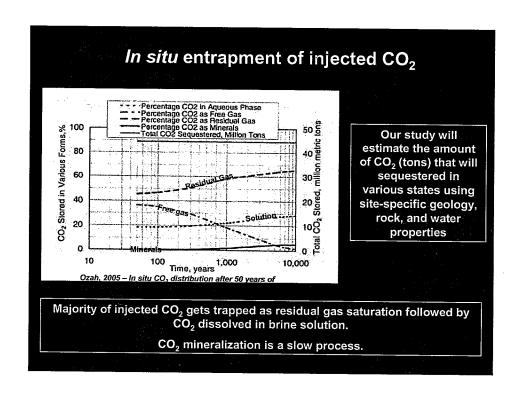


- Discovered in 1922 (134+ total wells).
- 44 active wells, 20.5 MM bbls (oil)
- Field owned by BEREXCO unitized
- Excellent waterflood performance (no gas) great CO<sub>2</sub>-EOR candidate
- Arbuckle aquifer 1050 ft thick (Mississippian top ~ 3650 ft, Arbuckle top ~ 4150 ft, Granite wash ~ 5100 ft)
- Considered for CO<sub>2</sub>-EOR using CO<sub>2</sub> from Coffeyville plant
- Anson and Bates 6 MM bbls oil (Mississippian Chat), 3D seismic donated by Noble Energy Corp
- All three fields together could sequester ~ 30 MM tons of CO<sub>2</sub>

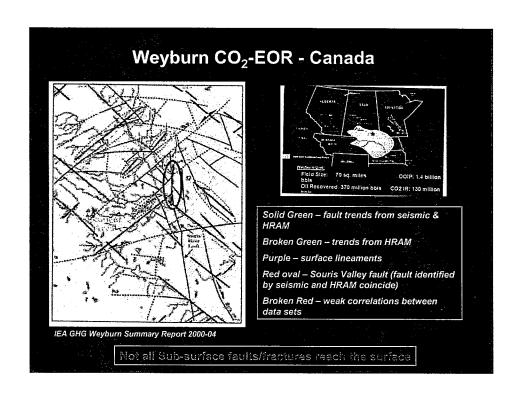
# **Data Collection & Analysis**

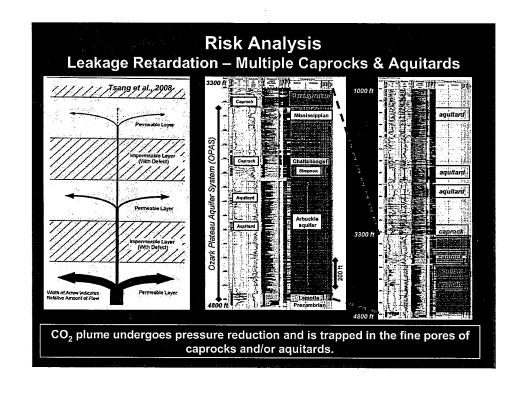

- Geophysical surveys at Wellington field
  - 3D, Gravity/Magnetic, 2D shear
- Drill, core, log, and test Well #1 to basement Wellington field
  - Collect water samples from different Arbuckle intervals
- Drill, log, and test Well #2 to basement Wellington field
  - Collect water samples from different Arbuckle intervals
- Analyze Mississippian and Arbuckle core (Well #1) & PVT
  - Integrate core data with previously taken cores
- Geochemical studies on Arbuckle water KSU Geology Dept.
- Analysis over 17 county area Regional geomodel of Arbuckle system
  - Satellite imagery
  - Gravity and magnetic
- Cap rock integrity and micro-biological studies KU Geology Dept.

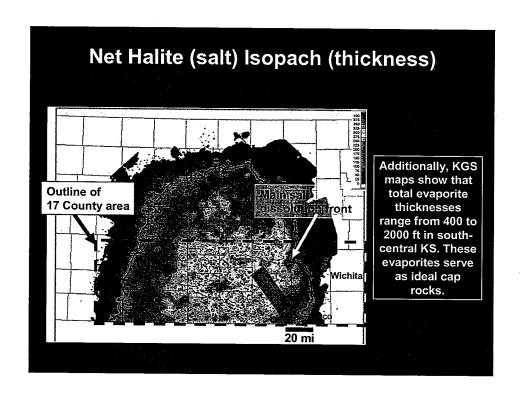



# What happens when super-critical CO<sub>2</sub> is injected into a saline aquifer?

- Part of the injected CO<sub>2</sub> dissolves in the surrounding brine under pressure - solution
- 2. Part of injected  $CO_2$  remains as free-phase (gas)  $CO_2$ 
  - Free-phase (gas) CO2 rises to the top of the formation (being lighter)
- 3. As free-phase (gas)  ${\rm CO_2}$  rises, additional  ${\rm CO_2}$  gets trapped in fine pores in the rock residual gas saturation
- 4. Natural movement of water in the aquifer dilutes CO<sub>2</sub> in solution and in free phase
- Over long term (100s and 1000s of years), some of the injected CO<sub>2</sub> gets trapped as mineral precipitates in the aquifer


Frio Pilot CO<sub>2</sub> injection Project, Texas





CO<sub>2</sub> plume visualized by cross-well seismic tomogram

